Big Data y el campo de investigación

0
61

¿Qué es Big Data?

Los científicos e investigadores han analizado datos desde ya hace mucho tiempo, lo que ahora representa el gran reto es la escala en la que estos son generados.

Esta explosión de «grandes datos» está transformando la manera en que se conduce una investigación adquiriendo habilidades en el uso de Big Data para resolver problemas complejos relacionados con el descubrimiento científico, investigación ambiental y biomédica, educación, salud, seguridad nacional, entre otros.

De entre los proyectos que se pueden mencionar donde se ha llevado a cabo el uso de una solución de Big Data se encuentran:

  • El Language, Interaction and Computation Laboratory (CLIC) en conjunto con la Universidad de Trento en Italia, son un grupo de investigadores cuyo interés es el estudio de la comunicación verbal y no verbal tanto con métodos computacionales como cognitivos.
  • Lineberger Comprehensive Cancer Center – Bioinformatics Group utiliza Hadoop y HBase para analizar datos producidos por los investigadores de The Cancer Genome Atlas(TCGA) para soportar las investigaciones relacionadas con el cáncer.
  • El PSG College of Technology, India, analiza múltiples secuencias de proteínas para determinar los enlaces evolutivos y predecir estructuras moleculares. La naturaleza del algoritmo y el paralelismo computacional de Hadoop mejora la velocidad y exactitud de estas secuencias.
  • La Universidad Distrital Francisco Jose de Caldas utiliza Hadoop para apoyar su proyecto de investigación relacionado con el sistema de inteligencia territorial de la ciudad de Bogotá.
  • La Universidad de Maryland es una de las seis universidades que colaboran en la iniciativa académica de cómputo en la nube de IBM/Google. Sus investigaciones incluyen proyectos en la lingüistica computacional (machine translation), modelado del lenguaje, bioinformática, análisis de correo electrónico y procesamiento de imágenes.

Para más referencias en el uso de Hadoop puede dirigirse a :
http://wiki.apache.org/hadoop/PoweredBy

El Instituto de Tecnología de la Universidad de Ontario (UOIT) junto con el Hospital de Toronto utilizan una plataforma de big data para análisis en tiempo real de IBM (IBM InfoSphere Streams), la cual permite monitorear bebés prematuros en las salas de neonatología para determinar cualquier cambio en la presión arterial, temperatura, alteraciones en los registros del electrocardiograma y electroencefalograma, etc., y así detectar hasta 24 horas antes aquellas condiciones que puedan ser una amenaza en la vida de los recién nacidos.

Los laboratorios Pacific Northwest National Labs(PNNL) utilizan de igual manera IBM InfoSphere Streams para analizar eventos de medidores de su red eléctrica y en tiempo real verificar aquellas excepciones o fallas en los componentes de la red, logrando comunicar casi de manera inmediata a los consumidores sobre el problema para ayudarlos en administrar su consumo de energía eléctrica.[3]

La esclerosis múltiple es una enfermedad del sistema nervioso que afecta al cerebro y la médula espinal. La comunidad de investigación biomédica y la Universidad del Estado de Nueva York (SUNY) están aplicando análisis con big data para contribuir en la progresión de la investigación, diagnóstico, tratamiento, y quizás hasta la posible cura de la esclerosis múltiple.[4]

Con la capacidad de generar toda esta información valiosa de diferentes sistemas, las empresas y los gobiernos están lidiando con el problema de analizar los datos para dos propósitos importantes: ser capaces de detectar y responder a los acontecimientos actuales de una manera oportuna, y para poder utilizar las predicciones del aprendizaje histórico. Esta situación requiere del análisis tanto de datos en movimiento (datos actuales) como de datos en reposo (datos históricos), que son representados a diferentes y enormes volúmenes, variedades y velocidades.

Deja un comentario